38 research outputs found

    Evolutionary stability of behavioural types in the continuous double auction

    No full text
    In this paper, we investigate the effectiveness of different types of bidding behaviour for trading agents in the Continuous Double Auction (CDA). Specifically, we consider behavioural types that are neutral (expected profit maximising), passive (targeting a higher profit than neutral) and aggressive (trading off profit for a better chance of transacting). For these types, we employ an evolutionary game-theoretic analysis to determine the population dynamics of agents that use them in different types of environments, including dynamic ones with market shocks. From this analysis, we find that given a symmetric demand and supply, agents are most likely to adopt neutral behaviour in static environments, while there tends to be more passive than neutral agents in dynamic ones. Furthermore, when we have asymmetric demand and supply, agents invariably adopt passive behaviour in both static and dynamic environments, though the gain in so doing is considerably smaller than in the symmetric case

    Regulating Highly Automated Robot Ecologies: Insights from Three User Studies

    Full text link
    Highly automated robot ecologies (HARE), or societies of independent autonomous robots or agents, are rapidly becoming an important part of much of the world's critical infrastructure. As with human societies, regulation, wherein a governing body designs rules and processes for the society, plays an important role in ensuring that HARE meet societal objectives. However, to date, a careful study of interactions between a regulator and HARE is lacking. In this paper, we report on three user studies which give insights into how to design systems that allow people, acting as the regulatory authority, to effectively interact with HARE. As in the study of political systems in which governments regulate human societies, our studies analyze how interactions between HARE and regulators are impacted by regulatory power and individual (robot or agent) autonomy. Our results show that regulator power, decision support, and adaptive autonomy can each diminish the social welfare of HARE, and hint at how these seemingly desirable mechanisms can be designed so that they become part of successful HARE.Comment: 10 pages, 7 figures, to appear in the 5th International Conference on Human Agent Interaction (HAI-2017), Bielefeld, German

    Agent-based homeostatic control for green energy in the smart grid

    No full text
    With dwindling non-renewable energy reserves and the adverse effects of climate change, the development of the smart electricity grid is seen as key to solving global energy security issues and to reducing carbon emissions. In this respect, there is a growing need to integrate renewable (or green) energy sources in the grid. However, the intermittency of these energy sources requires that demand must also be made more responsive to changes in supply, and a number of smart grid technologies are being developed, such as high-capacity batteries and smart meters for the home, to enable consumers to be more responsive to conditions on the grid in real-time. Traditional solutions based on these technologies, however, tend to ignore the fact that individual consumers will behave in such a way that best satisfies their own preferences to use or store energy (as opposed to that of the supplier or the grid operator). Hence, in practice, it is unclear how these solutions will cope with large numbers of consumers using their devices in this way. Against this background, in this paper, we develop novel control mechanisms based on the use of autonomous agents to better incorporate consumer preferences in managing demand. These agents, residing on consumers' smart meters, can both communicate with the grid and optimise their owner's energy consumption to satisfy their preferences. More specifically, we provide a novel control mechanism that models and controls a system comprising of a green energy supplier operating within the grid and a number of individual homes (each possibly owning a storage device). This control mechanism is based on the concept of homeostasis whereby control signals are sent to individual components of a system, based on their continuous feedback, in order to change their state so that the system may reach a stable equilibrium. Thus, we define a new carbon-based pricing mechanism for this green energy supplier that takes advantage of carbon-intensity signals available on the internet in order to provide real-time pricing. The pricing scheme is designed in such a way that it can be readily implemented using existing communication technologies and is easily understandable by consumers. Building upon this, we develop new control signals that the supplier can use to incentivise agents to shift demand (using their storage device) to times when green energy is available. Moreover, we show how these signals can be adapted according to changes in supply and to various degrees of penetration of storage in the system. We empirically evaluate our system and show that, when all homes are equipped with storage devices, the supplier can significantly reduce its reliance on other carbon-emitting power sources to cater for its own shortfalls. By so doing, the supplier reduces the carbon emission of the system by up to 25% while the consumer reduces its costs by up to 14.5%. Finally, we demonstrate that our homeostatic control mechanism is not sensitive to small prediction errors and the supplier is incentivised to accurately predict its green production to minimise costs

    Adaptive-Aggressive Traders Don't Dominate

    Get PDF
    For more than a decade Vytelingum's Adaptive-Aggressive (AA) algorithm has been recognized as the best-performing automated auction-market trading-agent strategy currently known in the AI/Agents literature; in this paper, we demonstrate that it is in fact routinely outperformed by another algorithm when exhaustively tested across a sufficiently wide range of market scenarios. The novel step taken here is to use large-scale compute facilities to brute-force exhaustively evaluate AA in a variety of market environments based on those used for testing it in the original publications. Our results show that even in these simple environments AA is consistently out-performed by IBM's GDX algorithm, first published in 2002. We summarize here results from more than one million market simulation experiments, orders of magnitude more testing than was reported in the original publications that first introduced AA. A 2019 ICAART paper by Cliff claimed that AA's failings were revealed by testing it in more realistic experiments, with conditions closer to those found in real financial markets, but here we demonstrate that even in the simple experiment conditions that were used in the original AA papers, exhaustive testing shows AA to be outperformed by GDX. We close this paper with a discussion of the methodological implications of our work: any results from previous papers where any one trading algorithm is claimed to be superior to others on the basis of only a few thousand trials are probably best treated with some suspicion now. The rise of cloud computing means that the compute-power necessary to subject trading algorithms to millions of trials over a wide range of conditions is readily available at reasonable cost: we should make use of this; exhaustive testing such as is shown here should be the norm in future evaluations and comparisons of new trading algorithms.Comment: To be published as a chapter in "Agents and Artificial Intelligence" edited by Jaap van den Herik, Ana Paula Rocha, and Luc Steels; forthcoming 2019/2020. 24 Pages, 1 Figure, 7 Table

    A risk-based bidding strategy for continuous double auctions

    No full text
    We develop a novel bidding strategy that software agents can use to buy and sell goods in Continuous Double Auctions (CDAs). Our strategy involves the agent forming a bid or ask by assessing the degree of risk involved and making a prediction about the competitive equilibrium that is likely to be reached in the marketplace. We benchmark our strategy against two of the most common strategies for CDAs, namely the Zero-Intelligence and the Zero-Intelligence Plus strategies, and we show that our agents outperform these benchmarks. Specifically, our agents win in 100% of the simulations against the ZI agents and, on average, 75% of the games against the ZIP agents

    A Framework for Designing Strategies for Trading Agents

    No full text
    In this paper, we present a novel multi-layered framework for designing strategies for trading agents. The objective of this work is to provide a framework that will assist strategy designers with the different aspects involved in designing a strategy. At present, such strategies are typically designed in an ad-hoc and intuitive manner with little regard for discerning best practice or attaining reuseability in the design process. Given this, our aim is to put such developments on a more systematic engineering footing. After we describe our framework, we then go on to illustrate its use for a particular type of market mechanism (namely the Continuous Double Auction)

    WhiteDolphin: A TAC travel agent.

    No full text
    In this paper, we detail our WhiteDolphin agent that was designed for the Trading Agent Competition (TAC) Travel game. Specifically, we employed the multi-layered IKB framework to design our strategy, and describe the intricate cogs involved at the different layers in this complex decision-making process. We focus, in particular, on WhiteDolphin’s strategic behaviour when bidding in the different types of auctions involved in the game, and how the information and knowledge required to support the complex decisions made is gathered and inferred respectively. Finally, we empirically analyse our agent by considering its performance in the 2006 competition where it ranked third
    corecore